On a Semismooth* Newton Method for Solving Generalized Equations
نویسندگان
چکیده
In the paper, a Newton-type method for solution of generalized equations (GEs) is derived, where linearization concerns both single-valued and multivalued part considered GE. The based on new notion semismoothness${}^*$, which, together with suitable regularity condition, ensures local superlinear convergence. An implementable version derived class GEs, frequently arising in optimization equilibrium models.
منابع مشابه
The Josephy–newton Method for Semismooth Generalized Equations and Semismooth Sqp for Optimization
While generalized equations with differentiable single-valued base mappings and the associated Josephy–Newton method have been studied extensively, the setting with semismooth base mapping had not been previously considered (apart from the two special cases of usual nonlinear equations and of Karush-Kuhn-Tucker optimality systems). We introduce for the general semismooth case appropriate notion...
متن کاملOn a Newton-Like Method for Solving Algebraic Riccati Equations
An exact line search method has been introduced by Benner and Byers [IEEE Trans. Autom. Control, 43 (1998), pp. 101–107] for solving continuous algebraic Riccati equations. The method is a modification of Newton’s method. A convergence theory is established in that paper for the Newton-like method under the strong hypothesis of controllability, while the original Newton’s method needs only the ...
متن کاملNewton - Secant method for solving operator equations ∗
where F is a Fréchet-differentiable operator defined on an open subset D of a Banach space X with values in a Banach space Y . Finding roots of Eq.(1) is a classical problem arising in many areas of applied mathematics and engineering. In this study we are concerned with the problem of approximating a locally unique solution α of Eq.(1). Some of the well known methods for this purpose are the f...
متن کاملA regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs
We consider a regularization method for nonlinear complementarity problems with F being a P0-function which replaces the original problem with a sequence of the regularized complementarity problems. In this paper, this sequence of regularized complementarity problems are solved approximately by applying the generalized Newton method for an equivalent augmented system of equations, constructed b...
متن کاملOn generalized Newton method for solving operator inclusions
In this paper, we study the existence and uniqueness theorem for solving the generalized operator equation of the form F(x) + G(x) + T(x) ∋ 0, where F is a Fréchet differentiable operator, G is a maximal monotone operator and T is a Lipschitzian operator defined on an open convex subset of a Hilbert space. Our results are improvements upon corresponding results of Uko [Generalized equations and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Optimization
سال: 2021
ISSN: ['1095-7189', '1052-6234']
DOI: https://doi.org/10.1137/19m1257408